Information

30.6: Plant Sensory Systems and Responses - Biology


Skills to Develop

  • Describe how red and blue light affect plant growth and metabolic activities
  • Discuss gravitropism
  • Understand how hormones affect plant growth and development
  • Describe thigmotropism, thigmonastism, and thigmogenesis
  • Explain how plants defend themselves from predators and respond to wounds

Animals can respond to environmental factors by moving to a new location. Plants have sophisticated systems to detect and respond to light, gravity, temperature, and physical touch. Receptors sense environmental factors and relay the information to effector systems—often through intermediate chemical messengers—to bring about plant responses.

Plant Responses to Light

Plants have a number of sophisticated uses for light that go far beyond their ability to photosynthesize low-molecular-weight sugars using only carbon dioxide, light, and water. Photomorphogenesis is the growth and development of plants in response to light. It allows plants to optimize their use of light and space. Photoperiodism is the ability to use light to track time. Plants can tell the time of day and time of year by sensing and using various wavelengths of sunlight. Phototropism is a directional response that allows plants to grow towards, or even away from, light.

The sensing of light in the environment is important to plants; it can be crucial for competition and survival. The response of plants to light is mediated by different photoreceptors, which are comprised of a protein covalently bonded to a light-absorbing pigment called a chromophore. Together, the two are called a chromoprotein.

The red/far-red and violet-blue regions of the visible light spectrum trigger structural development in plants. Sensory photoreceptors absorb light in these particular regions of the visible light spectrum because of the quality of light available in the daylight spectrum. In terrestrial habitats, light absorption by chlorophylls peaks in the blue and red regions of the spectrum. As light filters through the canopy and the blue and red wavelengths are absorbed, the spectrum shifts to the far-red end, shifting the plant community to those plants better adapted to respond to far-red light. Blue-light receptors allow plants to gauge the direction and abundance of sunlight, which is rich in blue–green emissions. Water absorbs red light, which makes the detection of blue light essential for algae and aquatic plants.

The Phytochrome System and the Red/Far-Red Response

The phytochromes are a family of chromoproteins with a linear tetrapyrrole chromophore, similar to the ringed tetrapyrrole light-absorbing head group of chlorophyll. Phytochromes have two photo-interconvertible forms: Pr and Pfr. Pr absorbs red light (~667 nm) and is immediately converted to Pfr. Pfr absorbs far-red light (~730 nm) and is quickly converted back to Pr. Absorption of red or far-red light causes a massive change to the shape of the chromophore, altering the conformation and activity of the phytochrome protein to which it is bound. Pfr is the physiologically active form of the protein; therefore, exposure to red light yields physiological activity. Exposure to far-red light inhibits phytochrome activity. Together, the two forms represent the phytochrome system (Figure (PageIndex{1})).

The phytochrome system acts as a biological light switch. It monitors the level, intensity, duration, and color of environmental light. The effect of red light is reversible by immediately shining far-red light on the sample, which converts the chromoprotein to the inactive Pr form. Additionally, Pfr can slowly revert to Pr in the dark, or break down over time. In all instances, the physiological response induced by red light is reversed. The active form of phytochrome (Pfr) can directly activate other molecules in the cytoplasm, or it can be trafficked to the nucleus, where it directly activates or represses specific gene expression.

Once the phytochrome system evolved, plants adapted it to serve a variety of needs. Unfiltered, full sunlight contains much more red light than far-red light. Because chlorophyll absorbs strongly in the red region of the visible spectrum, but not in the far-red region, any plant in the shade of another plant on the forest floor will be exposed to red-depleted, far-red-enriched light. The preponderance of far-red light converts phytochrome in the shaded leaves to the Pr (inactive) form, slowing growth. The nearest non-shaded (or even less-shaded) areas on the forest floor have more red light; leaves exposed to these areas sense the red light, which activates the Pfr form and induces growth. In short, plant shoots use the phytochrome system to grow away from shade and towards light. Because competition for light is so fierce in a dense plant community, the evolutionary advantages of the phytochrome system are obvious.

In seeds, the phytochrome system is not used to determine direction and quality of light (shaded versus unshaded). Instead, is it used merely to determine if there is any light at all. This is especially important in species with very small seeds, such as lettuce. Because of their size, lettuce seeds have few food reserves. Their seedlings cannot grow for long before they run out of fuel. If they germinated even a centimeter under the soil surface, the seedling would never make it into the sunlight and would die. In the dark, phytochrome is in the Pr (inactive form) and the seed will not germinate; it will only germinate if exposed to light at the surface of the soil. Upon exposure to light, Pr is converted to Pfr and germination proceeds.

Plants also use the phytochrome system to sense the change of season. Photoperiodism is a biological response to the timing and duration of day and night. It controls flowering, setting of winter buds, and vegetative growth. Detection of seasonal changes is crucial to plant survival. Although temperature and light intensity influence plant growth, they are not reliable indicators of season because they may vary from one year to the next. Day length is a better indicator of the time of year.

As stated above, unfiltered sunlight is rich in red light but deficient in far-red light. Therefore, at dawn, all the phytochrome molecules in a leaf quickly convert to the active Pfr form, and remain in that form until sunset. In the dark, the Pfr form takes hours to slowly revert back to the Pr form. If the night is long (as in winter), all of the Pfr form reverts. If the night is short (as in summer), a considerable amount of Pfr may remain at sunrise. By sensing the Pr/Pfr ratio at dawn, a plant can determine the length of the day/night cycle. In addition, leaves retain that information for several days, allowing a comparison between the length of the previous night and the preceding several nights. Shorter nights indicate springtime to the plant; when the nights become longer, autumn is approaching. This information, along with sensing temperature and water availability, allows plants to determine the time of the year and adjust their physiology accordingly. Short-day (long-night) plants use this information to flower in the late summer and early fall, when nights exceed a critical length (often eight or fewer hours). Long-day (short-night) plants flower during the spring, when darkness is less than a critical length (often eight to 15 hours). Not all plants use the phytochrome system in this way. Flowering in day-neutral plants is not regulated by daylength.

Career Connection: Horticulturalist

The word “horticulturist” comes from the Latin words for garden (hortus) and culture (cultura). This career has been revolutionized by progress made in the understanding of plant responses to environmental stimuli. Growers of crops, fruit, vegetables, and flowers were previously constrained by having to time their sowing and harvesting according to the season. Now, horticulturists can manipulate plants to increase leaf, flower, or fruit production by understanding how environmental factors affect plant growth and development.

Greenhouse management is an essential component of a horticulturist’s education. To lengthen the night, plants are covered with a blackout shade cloth. Long-day plants are irradiated with red light in winter to promote early flowering. For example, fluorescent (cool white) light high in blue wavelengths encourages leafy growth and is excellent for starting seedlings. Incandescent lamps (standard light bulbs) are rich in red light, and promote flowering in some plants. The timing of fruit ripening can be increased or delayed by applying plant hormones. Recently, considerable progress has been made in the development of plant breeds that are suited to different climates and resistant to pests and transportation damage. Both crop yield and quality have increased as a result of practical applications of the knowledge of plant responses to external stimuli and hormones.

Horticulturists find employment in private and governmental laboratories, greenhouses, botanical gardens, and in the production or research fields. They improve crops by applying their knowledge of genetics and plant physiology. To prepare for a horticulture career, students take classes in botany, plant physiology, plant pathology, landscape design, and plant breeding. To complement these traditional courses, horticulture majors add studies in economics, business, computer science, and communications.

​​​​​​The Blue Light Responses

Phototropism—the directional bending of a plant toward or away from a light source—is a response to blue wavelengths of light. Positive phototropism is growth towards a light source (Figure (PageIndex{2})), while negative phototropism (also called skototropism) is growth away from light.

The aptly-named phototropins are protein-based receptors responsible for mediating the phototropic response. Like all plant photoreceptors, phototropins consist of a protein portion and a light-absorbing portion, called the chromophore. In phototropins, the chromophore is a covalently-bound molecule of flavin; hence, phototropins belong to a class of proteins called flavoproteins.

Other responses under the control of phototropins are leaf opening and closing, chloroplast movement, and the opening of stomata. However, of all responses controlled by phototropins, phototropism has been studied the longest and is the best understood.

In their 1880 treatise The Power of Movements in Plants, Charles Darwin and his son Francis first described phototropism as the bending of seedlings toward light. Darwin observed that light was perceived by the tip of the plant (the apical meristem), but that the response (bending) took place in a different part of the plant. They concluded that the signal had to travel from the apical meristem to the base of the plant.

In 1913, Peter Boysen-Jensen demonstrated that a chemical signal produced in the plant tip was responsible for the bending at the base. He cut off the tip of a seedling, covered the cut section with a layer of gelatin, and then replaced the tip. The seedling bent toward the light when illuminated. However, when impermeable mica flakes were inserted between the tip and the cut base, the seedling did not bend. A refinement of the experiment showed that the signal traveled on the shaded side of the seedling. When the mica plate was inserted on the illuminated side, the plant did bend towards the light. Therefore, the chemical signal was a growth stimulant because the phototropic response involved faster cell elongation on the shaded side than on the illuminated side. We now know that as light passes through a plant stem, it is diffracted and generates phototropin activation across the stem. Most activation occurs on the lit side, causing the plant hormone indole acetic acid (IAA) to accumulate on the shaded side. Stem cells elongate under influence of IAA.

Cryptochromes are another class of blue-light absorbing photoreceptors that also contain a flavin-based chromophore. Cryptochromes set the plants 24-hour activity cycle, also know as its circadian rhythem, using blue light cues. There is some evidence that cryptochromes work together with phototropins to mediate the phototropic response.

Link to Learning

Use the navigation menu in the left panel of this website to view images of plants in motion.

Plant Responses to Gravity

Whether or not they germinate in the light or in total darkness, shoots usually sprout up from the ground, and roots grow downward into the ground. A plant laid on its side in the dark will send shoots upward when given enough time. Gravitropism ensures that roots grow into the soil and that shoots grow toward sunlight. Growth of the shoot apical tip upward is called negative gravitropism, whereas growth of the roots downward is called positive gravitropism.

Amyloplasts (also known as statoliths) are specialized plastids that contain starch granules and settle downward in response to gravity. Amyloplasts are found in shoots and in specialized cells of the root cap. When a plant is tilted, the statoliths drop to the new bottom cell wall. A few hours later, the shoot or root will show growth in the new vertical direction.

The mechanism that mediates gravitropism is reasonably well understood. When amyloplasts settle to the bottom of the gravity-sensing cells in the root or shoot, they physically contact the endoplasmic reticulum (ER), causing the release of calcium ions from inside the ER. This calcium signaling in the cells causes polar transport of the plant hormone IAA to the bottom of the cell. In roots, a high concentration of IAA inhibits cell elongation. The effect slows growth on the lower side of the root, while cells develop normally on the upper side. IAA has the opposite effect in shoots, where a higher concentration at the lower side of the shoot stimulates cell expansion, causing the shoot to grow up. After the shoot or root begin to grow vertically, the amyloplasts return to their normal position. Other hypotheses—involving the entire cell in the gravitropism effect—have been proposed to explain why some mutants that lack amyloplasts may still exhibit a weak gravitropic response.

Growth Responses

A plant’s sensory response to external stimuli relies on chemical messengers (hormones). Plant hormones affect all aspects of plant life, from flowering to fruit setting and maturation, and from phototropism to leaf fall. Potentially every cell in a plant can produce plant hormones. They can act in their cell of origin or be transported to other portions of the plant body, with many plant responses involving the synergistic or antagonistic interaction of two or more hormones. In contrast, animal hormones are produced in specific glands and transported to a distant site for action, and they act alone.

Plant hormones are a group of unrelated chemical substances that affect plant morphogenesis. Five major plant hormones are traditionally described: auxins (particularly IAA), cytokinins, gibberellins, ethylene, and abscisic acid. In addition, other nutrients and environmental conditions can be characterized as growth factors.

Auxins

The term auxin is derived from the Greek word auxein, which means "to grow." Auxins are the main hormones responsible for cell elongation in phototropism and gravitropism. They also control the differentiation of meristem into vascular tissue, and promote leaf development and arrangement. While many synthetic auxins are used as herbicides, IAA is the only naturally occurring auxin that shows physiological activity. Apical dominance—the inhibition of lateral bud formation—is triggered by auxins produced in the apical meristem. Flowering, fruit setting and ripening, and inhibition of abscission (leaf falling) are other plant responses under the direct or indirect control of auxins. Auxins also act as a relay for the effects of the blue light and red/far-red responses.

Commercial use of auxins is widespread in plant nurseries and for crop production. IAA is used as a rooting hormone to promote growth of adventitious roots on cuttings and detached leaves. Applying synthetic auxins to tomato plants in greenhouses promotes normal fruit development. Outdoor application of auxin promotes synchronization of fruit setting and dropping to coordinate the harvesting season. Fruits such as seedless cucumbers can be induced to set fruit by treating unfertilized plant flowers with auxins.

Cytokinins

The effect of cytokinins was first reported when it was found that adding the liquid endosperm of coconuts to developing plant embryos in culture stimulated their growth. The stimulating growth factor was found to be cytokinin, a hormone that promotes cytokinesis (cell division). Almost 200 naturally occurring or synthetic cytokinins are known to date. Cytokinins are most abundant in growing tissues, such as roots, embryos, and fruits, where cell division is occurring. Cytokinins are known to delay senescence in leaf tissues, promote mitosis, and stimulate differentiation of the meristem in shoots and roots. Many effects on plant development are under the influence of cytokinins, either in conjunction with auxin or another hormone. For example, apical dominance seems to result from a balance between auxins that inhibit lateral buds, and cytokinins that promote bushier growth.

Gibberellins

Gibberellins (GAs) are a group of about 125 closely related plant hormones that stimulate shoot elongation, seed germination, and fruit and flower maturation. GAs are synthesized in the root and stem apical meristems, young leaves, and seed embryos. In urban areas, GA antagonists are sometimes applied to trees under power lines to control growth and reduce the frequency of pruning.

GAs break dormancy (a state of inhibited growth and development) in the seeds of plants that require exposure to cold or light to germinate. Abscisic acid is a strong antagonist of GA action. Other effects of GAs include gender expression, seedless fruit development, and the delay of senescence in leaves and fruit. Seedless grapes are obtained through standard breeding methods and contain inconspicuous seeds that fail to develop. Because GAs are produced by the seeds, and because fruit development and stem elongation are under GA control, these varieties of grapes would normally produce small fruit in compact clusters. Maturing grapes are routinely treated with GA to promote larger fruit size, as well as looser bunches (longer stems), which reduces the instance of mildew infection (Figure (PageIndex{3})).

Abscisic Acid

The plant hormone abscisic acid (ABA) was first discovered as the agent that causes the abscission or dropping of cotton bolls. However, more recent studies indicate that ABA plays only a minor role in the abscission process. ABA accumulates as a response to stressful environmental conditions, such as dehydration, cold temperatures, or shortened day lengths. Its activity counters many of the growth-promoting effects of GAs and auxins. ABA inhibits stem elongation and induces dormancy in lateral buds.

ABA induces dormancy in seeds by blocking germination and promoting the synthesis of storage proteins. Plants adapted to temperate climates require a long period of cold temperature before seeds germinate. This mechanism protects young plants from sprouting too early during unseasonably warm weather in winter. As the hormone gradually breaks down over winter, the seed is released from dormancy and germinates when conditions are favorable in spring. Another effect of ABA is to promote the development of winter buds; it mediates the conversion of the apical meristem into a dormant bud. Low soil moisture causes an increase in ABA, which causes stomata to close, reducing water loss in winter buds.

Ethylene

Ethylene is associated with fruit ripening, flower wilting, and leaf fall. Ethylene is unusual because it is a volatile gas (C2H4). Hundreds of years ago, when gas street lamps were installed in city streets, trees that grew close to lamp posts developed twisted, thickened trunks and shed their leaves earlier than expected. These effects were caused by ethylene volatilizing from the lamps.

Aging tissues (especially senescing leaves) and nodes of stems produce ethylene. The best-known effect of the hormone, however, is the promotion of fruit ripening. Ethylene stimulates the conversion of starch and acids to sugars. Some people store unripe fruit, such as avocadoes, in a sealed paper bag to accelerate ripening; the gas released by the first fruit to mature will speed up the maturation of the remaining fruit. Ethylene also triggers leaf and fruit abscission, flower fading and dropping, and promotes germination in some cereals and sprouting of bulbs and potatoes.

Ethylene is widely used in agriculture. Commercial fruit growers control the timing of fruit ripening with application of the gas. Horticulturalists inhibit leaf dropping in ornamental plants by removing ethylene from greenhouses using fans and ventilation.

Nontraditional Hormones

Recent research has discovered a number of compounds that also influence plant development. Their roles are less understood than the effects of the major hormones described so far.

Jasmonates play a major role in defense responses to herbivory. Their levels increase when a plant is wounded by a predator, resulting in an increase in toxic secondary metabolites. They contribute to the production of volatile compounds that attract natural enemies of predators. For example, chewing of tomato plants by caterpillars leads to an increase in jasmonic acid levels, which in turn triggers the release of volatile compounds that attract predators of the pest.

Oligosaccharins also play a role in plant defense against bacterial and fungal infections. They act locally at the site of injury, and can also be transported to other tissues. Strigolactones promote seed germination in some species and inhibit lateral apical development in the absence of auxins. Strigolactones also play a role in the establishment of mycorrhizae, a mutualistic association of plant roots and fungi. Brassinosteroids are important to many developmental and physiological processes. Signals between these compounds and other hormones, notably auxin and GAs, amplifies their physiological effect. Apical dominance, seed germination, gravitropism, and resistance to freezing are all positively influenced by hormones. Root growth and fruit dropping are inhibited by steroids.

Plant Responses to Wind and Touch

The shoot of a pea plant winds around a trellis, while a tree grows on an angle in response to strong prevailing winds. These are examples of how plants respond to touch or wind.

The movement of a plant subjected to constant directional pressure is called thigmotropism, from the Greek words thigma meaning “touch,” and tropism implying “direction.” Tendrils are one example of this. The meristematic region of tendrils is very touch sensitive; light touch will evoke a quick coiling response. Cells in contact with a support surface contract, whereas cells on the opposite side of the support expand. Application of jasmonic acid is sufficient to trigger tendril coiling without a mechanical stimulus.

A thigmonastic response is a touch response independent of the direction of stimulus. In the Venus flytrap, two modified leaves are joined at a hinge and lined with thin fork-like tines along the outer edges. Tiny hairs are located inside the trap. When an insect brushes against these trigger hairs, touching two or more of them in succession, the leaves close quickly, trapping the prey. Glands on the leaf surface secrete enzymes that slowly digest the insect. The released nutrients are absorbed by the leaves, which reopen for the next meal.

Thigmomorphogenesis is a slow developmental change in the shape of a plant subjected to continuous mechanical stress. When trees bend in the wind, for example, growth is usually stunted and the trunk thickens. Strengthening tissue, especially xylem, is produced to add stiffness to resist the wind’s force. Researchers hypothesize that mechanical strain induces growth and differentiation to strengthen the tissues. Ethylene and jasmonate are likely involved in thigmomorphogenesis.

Link to Learning

Use the menu at the left to navigate to three short movies: a Venus fly trap capturing prey, the progressive closing of sensitive plant leaflets, and the twining of tendrils.

Defense Responses against Herbivores and Pathogens

Plants face two types of enemies: herbivores and pathogens. Herbivores both large and small use plants as food, and actively chew them. Pathogens are agents of disease. These infectious microorganisms, such as fungi, bacteria, and nematodes, live off of the plant and damage its tissues. Plants have developed a variety of strategies to discourage or kill attackers.

The first line of defense in plants is an intact and impenetrable barrier. Bark and the waxy cuticle can protect against predators. Other adaptations against herbivory include thorns, which are modified branches, and spines, which are modified leaves. They discourage animals by causing physical damage and inducing rashes and allergic reactions. A plant’s exterior protection can be compromised by mechanical damage, which may provide an entry point for pathogens. If the first line of defense is breached, the plant must resort to a different set of defense mechanisms, such as toxins and enzymes.

Secondary metabolites are compounds that are not directly derived from photosynthesis and are not necessary for respiration or plant growth and development. Many metabolites are toxic, and can even be lethal to animals that ingest them. Some metabolites are alkaloids, which discourage predators with noxious odors (such as the volatile oils of mint and sage) or repellent tastes (like the bitterness of quinine). Other alkaloids affect herbivores by causing either excessive stimulation (caffeine is one example) or the lethargy associated with opioids. Some compounds become toxic after ingestion; for instance, glycol cyanide in the cassava root releases cyanide only upon ingestion by the herbivore.

Mechanical wounding and predator attacks activate defense and protection mechanisms both in the damaged tissue and at sites farther from the injury location. Some defense reactions occur within minutes: others over several hours. The infected and surrounding cells may die, thereby stopping the spread of infection.

Long-distance signaling elicits a systemic response aimed at deterring the predator. As tissue is damaged, jasmonates may promote the synthesis of compounds that are toxic to predators. Jasmonates also elicit the synthesis of volatile compounds that attract parasitoids, which are insects that spend their developing stages in or on another insect, and eventually kill their host. The plant may activate abscission of injured tissue if it is damaged beyond repair.

Summary

Plants respond to light by changes in morphology and activity. Irradiation by red light converts the photoreceptor phytochrome to its far-red light-absorbing form—Pfr. This form controls germination and flowering in response to length of day, as well as triggers photosynthesis in dormant plants or those that just emerged from the soil. Blue-light receptors, cryptochromes, and phototropins are responsible for phototropism. Amyloplasts, which contain heavy starch granules, sense gravity. Shoots exhibit negative gravitropism, whereas roots exhibit positive gravitropism. Plant hormones—naturally occurring compounds synthesized in small amounts—can act both in the cells that produce them and in distant tissues and organs. Auxins are responsible for apical dominance, root growth, directional growth toward light, and many other growth responses. Cytokinins stimulate cell division and counter apical dominance in shoots. Gibberellins inhibit dormancy of seeds and promote stem growth. Abscisic acid induces dormancy in seeds and buds, and protects plants from excessive water loss by promoting stomatal closure. Ethylene gas speeds up fruit ripening and dropping of leaves. Plants respond to touch by rapid movements (thigmotropy and thigmonasty) and slow differential growth (thigmomorphogenesis). Plants have evolved defense mechanisms against predators and pathogens. Physical barriers like bark and spines protect tender tissues. Plants also have chemical defenses, including toxic secondary metabolites and hormones, which elicit additional defense mechanisms.

Glossary

abscisic acid (ABA)
plant hormone that induces dormancy in seeds and other organs
abscission
physiological process that leads to the fall of a plant organ (such as leaf or petal drop)
auxin
plant hormone that influences cell elongation (in phototropism), gravitropism, apical dominance and root growth
chromophore
molecule that absorbs light
cryptochrome
protein that absorbs light in the blue and ultraviolet regions of the light spectrum
cytokinin
plant hormone that promotes cell division
ethylene
volatile plant hormone that is associated with fruit ripening, flower wilting, and leaf fall
gibberellin (GA)
plant hormone that stimulates shoot elongation, seed germination, and the maturation and dropping of fruit and flowers
jasmonates
small family of compounds derived from the fatty acid linoleic acid
negative gravitropism
growth away from Earth’s gravity
oligosaccharin
hormone important in plant defenses against bacterial and fungal infections
photomorphogenesis
growth and development of plants in response to light
photoperiodism
occurrence of plant processes, such as germination and flowering, according to the time of year
phototropin
blue-light receptor that promotes phototropism, stomatal opening and closing, and other responses that promote photosynthesis
phototropism
directional bending of a plant toward a light source
phytochrome
plant pigment protein that exists in two reversible forms (Pr and Pfr) and mediates morphologic changes in response to red light
positive gravitropism
growth toward Earth’s gravitational center
statolith
(also, amyloplast) plant organelle that contains heavy starch granules
strigolactone
hormone that promotes seed germination in some species and inhibits lateral apical development in the absence of auxins
thigmomorphogenesis
developmental response to touch
thigmonastic
directional growth of a plant independent of the direction in which contact is applied
thigmotropism
directional growth of a plant in response to constant contact

The Blue Light Responses

Phototropism—the directional bending of a plant toward or away from a light source—is a response to blue wavelengths of light. Positive phototropism is growth towards a light source ([link]), while negative phototropism (also called skototropism) is growth away from light.

The aptly-named phototropins are protein-based receptors responsible for mediating the phototropic response. Like all plant photoreceptors, phototropins consist of a protein portion and a light-absorbing portion, called the chromophore. In phototropins, the chromophore is a covalently-bound molecule of flavin hence, phototropins belong to a class of proteins called flavoproteins.

Other responses under the control of phototropins are leaf opening and closing, chloroplast movement, and the opening of stomata. However, of all responses controlled by phototropins, phototropism has been studied the longest and is the best understood.

In their 1880 treatise The Power of Movements in Plants, Charles Darwin and his son Francis first described phototropism as the bending of seedlings toward light. Darwin observed that light was perceived by the tip of the plant (the apical meristem), but that the response (bending) took place in a different part of the plant. They concluded that the signal had to travel from the apical meristem to the base of the plant.


In 1913, Peter Boysen-Jensen demonstrated that a chemical signal produced in the plant tip was responsible for the bending at the base. He cut off the tip of a seedling, covered the cut section with a layer of gelatin, and then replaced the tip. The seedling bent toward the light when illuminated. However, when impermeable mica flakes were inserted between the tip and the cut base, the seedling did not bend. A refinement of the experiment showed that the signal traveled on the shaded side of the seedling. When the mica plate was inserted on the illuminated side, the plant did bend towards the light. Therefore, the chemical signal was a growth stimulant because the phototropic response involved faster cell elongation on the shaded side than on the illuminated side. We now know that as light passes through a plant stem, it is diffracted and generates phototropin activation across the stem. Most activation occurs on the lit side, causing the plant hormone indole acetic acid (IAA) to accumulate on the shaded side. Stem cells elongate under influence of IAA.

Cryptochromes are another class of blue-light absorbing photoreceptors that also contain a flavin-based chromophore. Cryptochromes set the plants 24-hour activity cycle, also know as its circadian rhythem, using blue light cues. There is some evidence that cryptochromes work together with phototropins to mediate the phototropic response.


Use the navigation menu in the left panel of this website to view images of plants in motion.


The Phytochrome System and the Red/Far-Red Response

The phytochromes are a family of chromoproteins with a linear tetrapyrrole chromophore, similar to the ringed tetrapyrrole light-absorbing head group of chlorophyll. Phytochromes have two photo-interconvertible forms: Pr and Pfr. Pr absorbs red light (

667 nm) and is immediately converted to Pfr. Pfr absorbs far-red light (

730 nm) and is quickly converted back to Pr. Absorption of red or far-red light causes a massive change to the shape of the chromophore, altering the conformation and activity of the phytochrome protein to which it is bound. Pfr is the physiologically active form of the protein therefore, exposure to red light yields physiological activity. Exposure to far-red light inhibits phytochrome activity. Together, the two forms represent the phytochrome system (Figure).

The phytochrome system acts as a biological light switch. It monitors the level, intensity, duration, and color of environmental light. The effect of red light is reversible by immediately shining far-red light on the sample, which converts the chromoprotein to the inactive Pr form. Additionally, Pfr can slowly revert to Pr in the dark, or break down over time. In all instances, the physiological response induced by red light is reversed. The active form of phytochrome (Pfr) can directly activate other molecules in the cytoplasm, or it can be trafficked to the nucleus, where it directly activates or represses specific gene expression.

Once the phytochrome system evolved, plants adapted it to serve a variety of needs. Unfiltered, full sunlight contains much more red light than far-red light. Because chlorophyll absorbs strongly in the red region of the visible spectrum, but not in the far-red region, any plant in the shade of another plant on the forest floor will be exposed to red-depleted, far-red-enriched light. The preponderance of far-red light converts phytochrome in the shaded leaves to the Pr (inactive) form, slowing growth. The nearest non-shaded (or even less-shaded) areas on the forest floor have more red light leaves exposed to these areas sense the red light, which activates the Pfr form and induces growth. In short, plant shoots use the phytochrome system to grow away from shade and towards light. Because competition for light is so fierce in a dense plant community, the evolutionary advantages of the phytochrome system are obvious.

In seeds, the phytochrome system is not used to determine direction and quality of light (shaded versus unshaded). Instead, is it used merely to determine if there is any light at all. This is especially important in species with very small seeds, such as lettuce. Because of their size, lettuce seeds have few food reserves. Their seedlings cannot grow for long before they run out of fuel. If they germinated even a centimeter under the soil surface, the seedling would never make it into the sunlight and would die. In the dark, phytochrome is in the Pr (inactive form) and the seed will not germinate it will only germinate if exposed to light at the surface of the soil. Upon exposure to light, Pr is converted to Pfr and germination proceeds.

The biologically inactive form of phytochrome (Pr) is converted to the biologically active form Pfr under illumination with red light. Far-red light and darkness convert the molecule back to the inactive form.

Plants also use the phytochrome system to sense the change of season. Photoperiodism is a biological response to the timing and duration of day and night. It controls flowering, setting of winter buds, and vegetative growth. Detection of seasonal changes is crucial to plant survival. Although temperature and light intensity influence plant growth, they are not reliable indicators of season because they may vary from one year to the next. Day length is a better indicator of the time of year.

As stated above, unfiltered sunlight is rich in red light but deficient in far-red light. Therefore, at dawn, all the phytochrome molecules in a leaf quickly convert to the active Pfr form, and remain in that form until sunset. In the dark, the Pfr form takes hours to slowly revert back to the Pr form. If the night is long (as in winter), all of the Pfr form reverts. If the night is short (as in summer), a considerable amount of Pfr may remain at sunrise. By sensing the Pr/Pfr ratio at dawn, a plant can determine the length of the day/night cycle. In addition, leaves retain that information for several days, allowing a comparison between the length of the previous night and the preceding several nights. Shorter nights indicate springtime to the plant when the nights become longer, autumn is approaching. This information, along with sensing temperature and water availability, allows plants to determine the time of the year and adjust their physiology accordingly. Short-day (long-night) plants use this information to flower in the late summer and early fall, when nights exceed a critical length (often eight or fewer hours). Long-day (short-night) plants flower during the spring, when darkness is less than a critical length (often eight to 15 hours). Not all plants use the phytochrome system in this way. Flowering in day-neutral plants is not regulated by daylength.

Career Connection

HorticulturalistThe word “horticulturist” comes from the Latin words for garden (hortus) and culture (cultura). This career has been revolutionized by progress made in the understanding of plant responses to environmental stimuli. Growers of crops, fruit, vegetables, and flowers were previously constrained by having to time their sowing and harvesting according to the season. Now, horticulturists can manipulate plants to increase leaf, flower, or fruit production by understanding how environmental factors affect plant growth and development.

Greenhouse management is an essential component of a horticulturist’s education. To lengthen the night, plants are covered with a blackout shade cloth. Long-day plants are irradiated with red light in winter to promote early flowering. For example, fluorescent (cool white) light high in blue wavelengths encourages leafy growth and is excellent for starting seedlings. Incandescent lamps (standard light bulbs) are rich in red light, and promote flowering in some plants. The timing of fruit ripening can be increased or delayed by applying plant hormones. Recently, considerable progress has been made in the development of plant breeds that are suited to different climates and resistant to pests and transportation damage. Both crop yield and quality have increased as a result of practical applications of the knowledge of plant responses to external stimuli and hormones.

Horticulturists find employment in private and governmental laboratories, greenhouses, botanical gardens, and in the production or research fields. They improve crops by applying their knowledge of genetics and plant physiology. To prepare for a horticulture career, students take classes in botany, plant physiology, plant pathology, landscape design, and plant breeding. To complement these traditional courses, horticulture majors add studies in economics, business, computer science, and communications.


Biology (Raven), 10th Edition

Chapter 4: Cell Structure
Chapter 5: Membranes
Chapter 6: Energy and Metabolism
Chapter 7: How Cells Harvest Energy
Chapter 8: Photosynthesis
Chapter 9: Cell Communication
Chapter 10: How Cells Divide

Part III Genetic and Molecular Biology

Chapter 11: Sexual Reproduction and Meiosis
Chapter 12: Patterns of Inheritance
Chapter 13: Chromosomes, Mapping, and the Meiosis&ndashInheritance Connection
Chapter 14: DNA: The Genetic Material
Chapter 15: Genes and How They Work
Chapter 16: Control of Gene Expression
Chapter 17: Biotechnology
Chapter 18: Genomics
Chapter 19: Cellular Mechanisms of Development

Chapter 20: Genes Within Populations
Chapter 21: The Evidence for Evolution
Chapter 22: The Origin of Species
Chapter 23: Systematics, Phylogenies, and Comparative Biology
Chapter 24: Genome Evolution
Chapter 25: Evolution of Development

Part V Diversity of Life on Earth

Chapter 26: The Origin and Diversity of Life
Chapter 27: Viruses
Chapter 28: Prokaryotes
Chapter 29: Protists
Chapter 30: Seedless Plants
Chapter 31: Seed Plants
Chapter 32: Fungi
Chapter 33: Animal Diversity and the Evolution of Body Plans
Chapter 34: Protostomes
Chapter 35: Deuterostomes

Part VI Plant Form and Function

Chapter 36: Plant Form
Chapter 37: Transport in Plants
Chapter 38: Plant Nutrition and Soils
Chapter 39: Plant Defense Responses
Chapter 40: Sensory Systems in Plants
Chapter 41: Plant Reproduction

Part VII Animal Form and Function

Chapter 42: The Animal Body and Principles of Regulation
Chapter 43: The Nervous System
Chapter 44: Sensory Systems
Chapter 45: The Endocrine System
Chapter 46: The Musculoskeletal System
Chapter 47: The Digestive System
Chapter 48: The Respiratory System
Chapter 49: The Circulatory System
Chapter 50: Osmotic Regulation and the Urinary System
Chapter 51: The Immune System
Chapter 52: The Reproductive System
Chapter 53: Animal Development

Part VIII Ecology and Behavior

Chapter 54: Behavioral Biology
Chapter 55: Ecology of Individuals and Populations
Chapter 56: Community Ecology
Chapter 57: Dynamics of Ecosystems
Chapter 58: The Biosphere
Chapter 59: Conservation Biology


Contents

Light Edit

Many plant organs contain photoreceptors (phototropins, cryptochromes, and phytochromes), each of which reacts very specifically to certain wavelengths of light. [6] These light sensors tell the plant if it is day or night, how long the day is, how much light is available, and where the light is coming from. Shoots generally grow towards light, while roots grow away from it, responses known as phototropism and skototropism, respectively. They are brought about by light-sensitive pigments like phototropins and phytochromes and the plant hormone auxin. [7]

Many plants exhibit certain behaviors at specific times of the day for example, flowers that open only in the mornings. Plants keep track of the time of day with a circadian clock. [6] This internal clock is synchronized with solar time every day using sunlight, temperature, and other cues, similar to the biological clocks present in other organisms. The internal clock coupled with the ability to perceive light also allows plants to measure the time of the day and so determine the season of the year. This is how many plants know when to flower (see photoperiodism). [6] The seeds of many plants sprout only after they are exposed to light. This response is carried out by phytochrome signalling. Plants are also able to sense the quality of light and respond appropriately. For example, in low light conditions, plants produce more photosynthetic pigments. If the light is very bright or if the levels of harmful ultraviolet radiation increase, plants produce more of their protective pigments that act as sunscreens. [8]

Gravity Edit

To orient themselves correctly, plants must be able to sense the direction of gravity. The subsequent response is known as gravitropism.

In roots, gravity is sensed and translated in the root tip, which then grows by elongating in the direction of gravity. In shoots, growth occurs in the opposite direction, a phenomenon known as negative gravitropism. [9] Poplar stems can detect reorientation and inclination (equilibrioception) through gravitropism. [10]

At the root tip, amyloplasts containing starch granules fall in the direction of gravity. This weight activates secondary receptors, which signal to the plant the direction of the gravitational pull. After this occurs, auxin is redistributed through polar auxin transport and differential growth towards gravity begins. In the shoots, auxin redistribution occurs in a way to produce differential growth away from gravity.

For perception to occur, the plant often must be able to sense, perceive, and translate the direction of gravity. Without gravity, proper orientation will not occur and the plant will not effectively grow. The root will not be able to uptake nutrients or water, and the shoot will not grow towards the sky to maximize photosynthesis. [11]

Touch Edit

Thigmotropism is directional movement that occurs in plants responding to physical touch. [12] Climbing plants, such as tomatoes, exhibit thigmotropism, allowing them to curl around objects. These responses are generally slow (on the order of multiple hours), and can best be observed with time-lapse cinematography, but rapid movements can occur as well. For example, the so-called "sensitive plant" (Mimosa pudica) responds to even the slightest physical touch by quickly folding its thin pinnate leaves such that they point downwards, [13] and carnivorous plants such as the Venus flytrap (Dionaea muscipula) produce specialized leaf structures that snap shut when touched or landed upon by insects. In the Venus flytrap, touch is detected by cilia lining the inside of the specialized leaves, which generate an action potential that stimulates motor cells and causes movement to occur. [14]

Smell Edit

Wounded or infected plants produce distinctive volatile odors, (e.g. methyl jasmonate, methyl salicylate, green leaf volatiles), which can in turn be perceived by neighboring plants. [15] [16] Plants detecting these sorts of volatile signals often respond by increasing their chemical defenses or and prepare for attack by producing chemicals which defend against insects or attract insect predators. [15]

Plant hormones and chemical signals Edit

Plants systematically use hormonal signalling pathways to coordinate their development and morphology.

Plants produce several signal molecules usually associated with animal nervous systems, such as glutamate, GABA, acetylcholine, melatonin, and serotonin. [17] They may also use ATP, NO, and ROS for signaling in similar ways as animals do. [18]

Electrophysiology Edit

Plants have a variety of methods of delivering electrical signals. The four commonly recognized propagation methods include action potentials (APs), variation potentials (VPs), local electric potentials (LEPs), and systemic potentials (SPs) [19] [20] [21]

Although plant cells are not neurons, they can be electrically excitable and can display rapid electrical responses in the form of APs to environmental stimuli. APs allow for the movement of signaling ions and molecules from the pre-potential cell to the post-potential cell(s). These electrophysiological signals are constituted by gradient fluxes of ions such as H + , K + , Cl − , Na + , and Ca 2+ but it is also thought that other electrically charge ions such as Fe 3+ , Al 3+ , Mg 2+ , Zn 2+ , Mn 2+ , and Hg 2+ may also play a role in downstream outputs. [22] The maintenance of each ions electrochemical gradient is vital in the health of the cell in that if the cell would ever reach equilibrium with its environment, it is dead. [23] [24] This dead state can be due to a variety of reasons such as ion channel blocking or membrane puncturing.

These electrophysiological ions bind to receptors on the receiving cell causing downstream effects result from one or a combination of molecules present. This means of transferring information and activating physiological responses via a signaling molecule system has been found to be faster and more frequent in the presence of APs. [22]

These action potentials can influence processes such as actin-based cytoplasmic streaming, plant organ movements, wound responses, respiration, photosynthesis, and flowering. [25] [26] [27] [28] These electrical responses can cause the synthesis of numerous organic molecules, including ones that act as neuroactive substances in other organisms such as calcium ions. [29]

The ion flux across cells also influence the movement of other molecules and solutes. This changes the osmotic gradient of the cell, resulting in changes to turgor pressure in plant cells by water and solute flux across cell membranes. These variations are vital for nutrient uptake, growth, many types of movements (tropisms and nastic movements) among other basic plant physiology and behavior. [30] [31] (Higinbotham 1973 Scott 2008 Segal 2016).

Thus, plants achieve behavioural responses in environmental, communicative, and ecological contexts.

Signal perception Edit

Plant behavior is mediated by phytochromes, kinins, hormones, antibiotic or other chemical release, changes of water and chemical transport, and other means.

Plants have many strategies to fight off pests. For example, they can produce a slew of different chemical toxins against predators and parasites or they can induce rapid cell death to prevent the spread of infectious agents. Plants can also respond to volatile signals produced by other plants. [32] [33] Jasmonate levels also increase rapidly in response to mechanical perturbations such as tendril coiling. [34]

In plants, the mechanism responsible for adaptation is signal transduction. [35] [36] [37] [38] Adaptive responses include:

  • Active foraging for light and nutrients. They do this by changing their architecture, e.g. branch growth and direction, physiology, and phenotype. [39][40][41]
  • Leaves and branches being positioned and oriented in response to a light source. [39][42]
  • Detecting soil volume and adapting growth accordingly, independently of nutrient availability. [43][44][45] .

Plants do not have brains or neuronal networks like animals do however, reactions within signalling pathways may provide a biochemical basis for learning and memory in addition to computation and basic problem solving. [46] [47] Controversially, the brain is used as a metaphor in plant intelligence to provide an integrated view of signalling. [48]

Plants respond to environmental stimuli by movement and changes in morphology. They communicate while actively competing for resources. In addition, plants accurately compute their circumstances, use sophisticated cost–benefit analysis, and take tightly controlled actions to mitigate and control diverse environmental stressors. Plants are also capable of discriminating between positive and negative experiences and of learning by registering memories from their past experiences. [49] [50] [51] [52] [53] Plants use this information to adapt their behaviour in order to survive present and future challenges of their environments.

Plant physiology studies the role of signalling to integrate data obtained at the genetic, biochemical, cellular, and physiological levels, in order to understand plant development and behaviour. The neurobiological view sees plants as information-processing organisms with rather complex processes of communication occurring throughout the individual plant. It studies how environmental information is gathered, processed, integrated, and shared (sensory plant biology) to enable these adaptive and coordinated responses (plant behaviour) and how sensory perceptions and behavioural events are 'remembered' in order to allow predictions of future activities upon the basis of past experiences. Plants, it is claimed by some [ who? ] plant physiologists, are as sophisticated in behaviour as animals, but this sophistication has been masked by the time scales of plants' responses to stimuli, which are typically many orders of magnitude slower than those of animals. [ citation needed ]

It has been argued that although plants are capable of adaptation, it should not be called intelligence per se, as plant neurobiologists rely primarily on metaphors and analogies to argue that complex responses in plants can only be produced by intelligence. [54] "A bacterium can monitor its environment and instigate developmental processes appropriate to the prevailing circumstances, but is that intelligence? Such simple adaptation behaviour might be bacterial intelligence but is clearly not animal intelligence." [55] However, plant intelligence fits a definition of intelligence proposed by David Stenhouse in a book about evolution and animal intelligence, in which he describes it as "adaptively variable behaviour during the lifetime of the individual". [56] Critics of the concept have also argued that a plant cannot have goals once it is past the developmental stage of seedling because, as a modular organism, each module seeks its own survival goals and the resulting organism-level behavior is not centrally controlled. [55] This view, however, necessarily accommodates the possibility that a tree is a collection of individually intelligent modules cooperating, competing, and influencing each other to determine behavior in a bottom-up fashion. The development into a larger organism whose modules must deal with different environmental conditions and challenges is not universal across plant species, however, as smaller organisms might be subject to the same conditions across their bodies, at least, when the below and aboveground parts are considered separately. Moreover, the claim that central control of development is completely absent from plants is readily falsified by apical dominance. [ citation needed ]

The Italian botanist Federico Delpino wrote on the idea of plant intelligence in 1867. [57] Charles Darwin studied movement in plants and in 1880 published a book, The Power of Movement in Plants. Darwin concludes:

It is hardly an exaggeration to say that the tip of the radicle thus endowed [..] acts like the brain of one of the lower animals the brain being situated within the anterior end of the body, receiving impressions from the sense-organs, and directing the several movements.

In 2020, Paco Calvo studied the dynamic of plant movements and investigated whether French beans deliberately aim for supporting structures. [58] Calvo said: “We see these signatures of complex behaviour, the one and only difference being is that it’s not neural-based, as it is in humans. This isn’t just adaptive behaviour, it’s anticipatory, goal-directed, flexible behaviour.” [59]

In philosophy, there are few studies of the implications of plant perception. Michael Marder put forth a phenomenology of plant life based on the physiology of plant perception. [60] Paco Calvo Garzon offers a philosophical take on plant perception based on the cognitive sciences and the computational modeling of consciousness. [61]

Comparison with neurobiology Edit

Plant sensory and response systems have been compared to the neurobiological processes of animals. Plant neurobiology concerns mostly the sensory adaptive behaviour of plants and plant electrophysiology. Indian scientist J. C. Bose is credited as the first person to research and talk about the neurobiology of plants. Many plant scientists and neuroscientists, however, view the term "plant neurobiology" as a misnomer, because plants do not have neurons. [54]

The ideas behind plant neurobiology were criticised in a 2007 article [54] published in Trends in Plant Science by Amedeo Alpi and 35 other scientists, including such eminent plant biologists as Gerd Jürgens, Ben Scheres, and Chris Sommerville. The breadth of fields of plant science represented by these researchers reflects the fact that the vast majority of the plant science research community rejects plant neurobiology as a legitimate notion. Their main arguments are that: [54]

  • "Plant neurobiology does not add to our understanding of plant physiology, plant cell biology or signaling".
  • "There is no evidence for structures such as neurons, synapses or a brain in plants".
  • The common occurrence of plasmodesmata in plants "poses a problem for signaling from an electrophysiological point of view", since extensive electrical coupling would preclude the need for any cell-to-cell transport of ‘neurotransmitter-like' compounds.

The authors call for an end to "superficial analogies and questionable extrapolations" if the concept of "plant neurobiology" is to benefit the research community. [54] Several responses to this criticism have attempted to clarify that the term "plant neurobiology" is a metaphor and that metaphors have proved useful on previous occasions. [62] [63] Plant ecophysiology describes this phenomenon.

Parallels in other taxa Edit

The concepts of plant perception, communication, and intelligence have parallels in other biological organisms for which such phenomena appear foreign to or incompatible with traditional understandings of biology, or have otherwise proven difficult to study or interpret. Similar mechanisms exist in bacterial cells, choanoflagellates, fungal hyphae, and sponges, among many other examples. All of these organisms, despite being devoid of a brain or nervous system, are capable of sensing their immediate and momentary environment and responding accordingly. In the case of unicellular life, the sensory pathways are even more primitive in the sense that they take place on the surface of a single cell, as opposed to within a network of many related cells.


30.6: Plant Sensory Systems and Responses - Biology

Butterfly sensory systems are very different from humans (for example, they can see ultraviolet light and hear ultrasound). These differences can make it hard to study butterfly senses. Butterflies probably use their senses in many ways we just don't know about yet because we perceive the world through mammalian senses.

TOUCH. Touch is important in different ways during the larval and adult stages of a butterfly's life. They sense touch through hairs that extend through sockets in the exoskeleton. These hairs, called tactile setae, are attached to nerve cells, which relay information about the hairs' movement to the butterfly.

In larvae, tactile setae are scattered fairly evenly over the whole body. You can see these setae on Monarch larvae with a simple magnifying lens or under a microscope. Larvae have a variety of responses to touch, and these responses may change over time. (This could be an interesting area of experimentation for students!) Many students notice that larvae often curl up into a ball when lightly touched.

Adults have tactile setae on almost all of their body parts. In both adults and larvae, the setae play an important role in helping the butterfly sense the relative position of many body parts (e.g., where is the second segment of the thorax in relation to the third segment). This is especially important for flight, and there are several collections of specialized setae and nerves that help the adult sense wind, gravity, and the position of head, body, wings, legs, antennae, and other body parts. In monarchs, setae on the adult's antennae sense both touch and smell.

HEARING. In general, butterflies appear to have poor hearing. Larvae perceive sound through tactile setae, but they seem to mainly respond to sudden noises. This is easy to observe in Monarch larvae, which will rear up if you clap loudly near them. This reaction is often called a startle response, a behavior that probably evolved to protect the larvae from predators who make noise.

If you clap repeatedly, the butterflies get used to the noise and stop responding-a phenomenon of learning called habituation. Habituation happens throughout the animal kingdom, including in humans. For example, people who live in cities often stop noticing the noise of traffic until they go out into the country and "hear" its absence again.

Adult butterflies often sense sound through veins in their wings, but scientists have only studied this in a limited number of species. A few species of moths and butterflies (not monarchs) make sound by rubbing or clicking together parts of their bodies (e.g., wing veins, legs, clapping their wings together, etc.). In some species this may be a means of communication between individuals and can play an important role in finding mates. In other species it seems to serve as a way to scare off predators such as birds. We're not sure how many species of butterflies and moths use sound because humans often can't hear the noises they produce.


SIGHT. Butterflies see very differently during different stages of their lives. Larval vision is limited and poor. They see through their 12 ocelli, which have only a couple cells each (compared to the thousands of cells associated with adult insect eyes or human eyes). Larvae can still see the same range of light as adults, however, from red all the way through ultraviolet.

Adults see through compound eyes made up of thousands of ommatidia. Each ommatidium gathers light and processes visual information through its own lens and nerve system.


The small plastic "Dragonfly eye" available in many science, toy, and photography stores can give students an idea of how the world looks through a compound eye. Compound eyes give butterflies excellent perception of color and motion in a wide range butterflies can see up, down, forward, backward, and to the sides at the same time. On the other hand, they are not very good at judging distance or perceiving patterns, and the images are not united into one continuous picture. Butterflies apparently see the world as a series of still photos rather than a movie.

Butterflies can also perceive polarized light (light waves that move in only one direction, and butterflies can sense that direction). Bees use their perception of polarized light to navigate to and from their hives, and some people suggest that butterflies may use it in similar ways, both to move around their habitat and to migrate.

TASTE & SMELL. Butterflies get much of their information about the world through chemoreceptors scattered across their bodies. In butterflies, chemoreceptors are nerve cells that open onto the surface of the exoskeleton and react to the presence of different chemicals in the environment. They operate on a system similar to a lock and key. When a particular chemical runs into a chemoreceptor, it fits into a "lock" on the nerve. This fit sends a message to the nerve cell telling the butterfly that it has encountered the chemical. For example, organs on the back of butterfly tarsi sense dissolved sugar when the dissolved sugar touches these chemoreceptors, the butterfly extends its proboscis to eat the nectar its tarsi have sensed. Humans also have chemoreceptors, which are concentrated on the tongue (tastebuds) and in the nose.

Adult butterflies sense most smells through their antennae, which are densely covered with chemoreceptors, especially on the clubs. In monarchs, chemoreceptors on the antennae sense the honey odor associated with nectar and feeding as well as special chemicals released by the male, called pheromones. In general, pheromones help males and females of the same species find each other to mate. Monarch males can produce pheromones, which they secrete through special glands on the wings. In contrast to their close relatives, however, monarchs do not require pheromones for successful mating. Scientists are still studying what role, if any, pheromones play in Monarch mating rituals.

Female butterflies often have important chemoreceptors on their legs to help them find appropriate host plants for their eggs. These chemoreceptors are at the base of spines on the back of the legs, and they run up along the spine to its tip. Females drum their legs against the plant, which releases plant juices. The chemoreceptors along the spines tell the butterfly whether they are standing on the correct host plant. Monarch females test host plants with all six legs before laying eggs. They also probably have chemoreceptors on their ovipositor. Monarchs invest a lot of time into finding the correct host plant for their eggs because it is essential for the eggs' survival.


Start Quiz: Biology 30 Plant Form and Physiology MCQ Quiz

This NASA image is a composite of several satellite-based views of Earth. To make the whole-Earth image, NASA scientists combine observations of different parts of the planet. (credit: NASA/GSFC/NOAA/USGS)

Viewed from space, Earth offers no clues about the diversity of life forms that reside there. The first forms of life on Earth are thought to have been microorganisms that existed for billions of years in the ocean before plants and animals appeared. The mammals, birds, and flowers so familiar to us are all relatively recent, originating 130 to 200 million years ago. Humans have inhabited this planet for only the last 2.5 million years, and only in the last 200,000 years have humans started looking like we do today.

Chapter 30: Plant Form and Physiology MCQ Multiple Choices Questions Quiz Test Bank

30.5 Transport of Water and Solutes in Plants

30.6 Plant Sensory Systems and Responses

Name: Biology 30 Plant Form and Physiology MCQ
Download URL: Download MCQ Quiz PDF eBook
Book Size: 23 Pages
Copyright Date: 2015
Language: English US
Categories: Educational Materials

Question: Which of the following cell types forms most of the inside of a plant?

Question: Which of the following is an example of secondary growth?

increase in thickness or girth

Question: Plant regions of continuous growth are made up of ________.

Question: Stem regions at which leaves are attached are called ________.

Question: Newly-formed root cells begin to form different cell types in the ________.

Question: Roots that enable a plant to grow on another plant are called ________.

Question: Which of the following is the major site of photosynthesis?

Question: Tracheids, vessel elements, sieve-tube cells, and companion cells are components of ________.

Question: The ________ forces selective uptake of minerals in the root.

Question: The primary growth of a plant is due to the action of the ________.


Changes in splicing and neuromodulatory gene expression programs in sensory neurons with pheromone signaling and social experience

Social experience and pheromone signaling in ORNs affect pheromone responses and male courtship behaviors in Drosophila, however, the molecular mechanisms underlying this circuit-level neuromodulation remain less clear. Previous studies identified social experience and pheromone signaling-dependent modulation of chromatin around behavioral switch gene fruitless, which encodes a transcription factor necessary and sufficient for male behaviors. To identify the molecular mechanisms driving social experience-dependent neuromodulation, we performed RNA-seq from antennal samples of mutant fruit flies in pheromone receptors and fruitless, as well as grouped or isolated wild-type males. We found that loss of pheromone detection differentially alters the levels of fruitless exons suggesting changes in splicing patterns. In addition, many Fruitless target neuromodulatory genes, such as neurotransmitter receptors, ion channels, and ion transporters, are differentially regulated by social context and pheromone signaling. Our results suggest that modulation of circuit activity and behaviors in response to social experience and pheromone signaling arise due to changes in transcriptional programs for neuromodulators downstream of behavioral switch gene function.


Watch the video: Έξυπνο Γάντι u0026 Σύστημα αυτόματης μέτρησης της διόγκωσης των ηπατικών κυττάρων (January 2022).